spectral envelope - translation to russian
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

spectral envelope - translation to russian

RELATIVE IMPORTANCE OF CERTAIN FREQUENCIES IN A COMPOSITE SIGNAL
Signal frequency spectrum; Power spectrum; Spectral envelope; Power spectral density; Power-spectral density function; Spectral power density; Signal spectrum; Spectral edge frequency; Acceleration spectral density; W/Hz; DBm/Hz; Energy spectral density; Spectral density function; Spectral phase; Phase spectrum; Spectral distribution function; Spectral function; Cross-spectral density; Frequency spectrum; Spectral density (signal processing); Spectral energy density; Fluctuation spectrum; Fluctuation spectra; Amplitude spectral density; Amplitude spectrum; Cross power spectral density; Power spectra; Phase spectral density; Cross-power spectrum
  • The spectral density of a [[fluorescent light]] as a function of optical wavelength shows peaks at atomic transitions, indicated by the numbered arrows.
  • The power spectrum of the measured [[cosmic microwave background radiation]] temperature anisotropy in terms of the angular scale. The solid line is a theoretical model, for comparison.
  • Spectrogram of an [[FM radio]] signal with frequency on the horizontal axis and time increasing upwards on the vertical axis.
  • The voice waveform over time (left) has a broad audio power spectrum (right).

spectral envelope         
огибающая спектра
spectral density         
монохроматическая плотность
signal spectrum         

нефтегазовая промышленность

спектр сигнала

Definition

envelope
n.
1) to address; seal an envelope
2) a pay envelope (AE; BE has pay packet)
3) a self-addressed; stamped; window envelope USAGE NOTE: AE has stamped self-addressed envelope; BE has stamped addressed envelope.

Wikipedia

Spectral density

The power spectrum S x x ( f ) {\displaystyle S_{xx}(f)} of a time series x ( t ) {\displaystyle x(t)} describes the distribution of power into frequency components composing that signal. According to Fourier analysis, any physical signal can be decomposed into a number of discrete frequencies, or a spectrum of frequencies over a continuous range. The statistical average of a certain signal or sort of signal (including noise) as analyzed in terms of its frequency content, is called its spectrum.

When the energy of the signal is concentrated around a finite time interval, especially if its total energy is finite, one may compute the energy spectral density. More commonly used is the power spectral density (or simply power spectrum), which applies to signals existing over all time, or over a time period large enough (especially in relation to the duration of a measurement) that it could as well have been over an infinite time interval. The power spectral density (PSD) then refers to the spectral energy distribution that would be found per unit time, since the total energy of such a signal over all time would generally be infinite. Summation or integration of the spectral components yields the total power (for a physical process) or variance (in a statistical process), identical to what would be obtained by integrating x 2 ( t ) {\displaystyle x^{2}(t)} over the time domain, as dictated by Parseval's theorem.

The spectrum of a physical process x ( t ) {\displaystyle x(t)} often contains essential information about the nature of x {\displaystyle x} . For instance, the pitch and timbre of a musical instrument are immediately determined from a spectral analysis. The color of a light source is determined by the spectrum of the electromagnetic wave's electric field E ( t ) {\displaystyle E(t)} as it fluctuates at an extremely high frequency. Obtaining a spectrum from time series such as these involves the Fourier transform, and generalizations based on Fourier analysis. In many cases the time domain is not specifically employed in practice, such as when a dispersive prism is used to obtain a spectrum of light in a spectrograph, or when a sound is perceived through its effect on the auditory receptors of the inner ear, each of which is sensitive to a particular frequency.

However this article concentrates on situations in which the time series is known (at least in a statistical sense) or directly measured (such as by a microphone sampled by a computer). The power spectrum is important in statistical signal processing and in the statistical study of stochastic processes, as well as in many other branches of physics and engineering. Typically the process is a function of time, but one can similarly discuss data in the spatial domain being decomposed in terms of spatial frequency.

What is the Russian for spectral envelope? Translation of &#39spectral envelope&#39 to Russian